p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.128D4, M4(2).7Q8, C4.34(C4⋊Q8), C22.15(C4×Q8), C4.85(C22⋊Q8), C4.53(C4.4D4), (C4×M4(2)).28C2, C4⋊M4(2).36C2, C23.202(C22×C4), (C2×C42).340C22, (C22×C4).707C23, C22.C42.13C2, (C2×M4(2)).219C22, C2.20(C23.67C23), C2.29(M4(2).8C22), (C2×C4⋊C4).26C4, (C2×C4).14(C2×Q8), (C2×C4).71(C4○D4), (C2×C4).1369(C2×D4), (C22×C4).28(C2×C4), (C2×C42.C2).8C2, (C2×C4⋊C4).100C22, (C2×C4).210(C22⋊C4), C22.307(C2×C22⋊C4), SmallGroup(128,730)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.128D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1b2, cbc-1=dbd-1=b-1, dcd-1=a2b-1c3 >
Subgroups: 196 in 114 conjugacy classes, 56 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C4×C8, C8⋊C4, C4⋊C8, C2×C42, C2×C4⋊C4, C42.C2, C2×M4(2), C22.C42, C4×M4(2), C4⋊M4(2), C2×C42.C2, C42.128D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C23.67C23, M4(2).8C22, C42.128D4
(1 34 31 14)(2 35 32 15)(3 36 25 16)(4 37 26 9)(5 38 27 10)(6 39 28 11)(7 40 29 12)(8 33 30 13)(17 49 48 58)(18 50 41 59)(19 51 42 60)(20 52 43 61)(21 53 44 62)(22 54 45 63)(23 55 46 64)(24 56 47 57)
(1 7 5 3)(2 4 6 8)(9 11 13 15)(10 16 14 12)(17 23 21 19)(18 20 22 24)(25 31 29 27)(26 28 30 32)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)(49 55 53 51)(50 52 54 56)(57 59 61 63)(58 64 62 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 53 27 58)(2 59 28 54)(3 51 29 64)(4 57 30 52)(5 49 31 62)(6 63 32 50)(7 55 25 60)(8 61 26 56)(9 20 33 47)(10 44 34 17)(11 18 35 45)(12 42 36 23)(13 24 37 43)(14 48 38 21)(15 22 39 41)(16 46 40 19)
G:=sub<Sym(64)| (1,34,31,14)(2,35,32,15)(3,36,25,16)(4,37,26,9)(5,38,27,10)(6,39,28,11)(7,40,29,12)(8,33,30,13)(17,49,48,58)(18,50,41,59)(19,51,42,60)(20,52,43,61)(21,53,44,62)(22,54,45,63)(23,55,46,64)(24,56,47,57), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,55,53,51)(50,52,54,56)(57,59,61,63)(58,64,62,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,53,27,58)(2,59,28,54)(3,51,29,64)(4,57,30,52)(5,49,31,62)(6,63,32,50)(7,55,25,60)(8,61,26,56)(9,20,33,47)(10,44,34,17)(11,18,35,45)(12,42,36,23)(13,24,37,43)(14,48,38,21)(15,22,39,41)(16,46,40,19)>;
G:=Group( (1,34,31,14)(2,35,32,15)(3,36,25,16)(4,37,26,9)(5,38,27,10)(6,39,28,11)(7,40,29,12)(8,33,30,13)(17,49,48,58)(18,50,41,59)(19,51,42,60)(20,52,43,61)(21,53,44,62)(22,54,45,63)(23,55,46,64)(24,56,47,57), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,55,53,51)(50,52,54,56)(57,59,61,63)(58,64,62,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,53,27,58)(2,59,28,54)(3,51,29,64)(4,57,30,52)(5,49,31,62)(6,63,32,50)(7,55,25,60)(8,61,26,56)(9,20,33,47)(10,44,34,17)(11,18,35,45)(12,42,36,23)(13,24,37,43)(14,48,38,21)(15,22,39,41)(16,46,40,19) );
G=PermutationGroup([[(1,34,31,14),(2,35,32,15),(3,36,25,16),(4,37,26,9),(5,38,27,10),(6,39,28,11),(7,40,29,12),(8,33,30,13),(17,49,48,58),(18,50,41,59),(19,51,42,60),(20,52,43,61),(21,53,44,62),(22,54,45,63),(23,55,46,64),(24,56,47,57)], [(1,7,5,3),(2,4,6,8),(9,11,13,15),(10,16,14,12),(17,23,21,19),(18,20,22,24),(25,31,29,27),(26,28,30,32),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44),(49,55,53,51),(50,52,54,56),(57,59,61,63),(58,64,62,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,53,27,58),(2,59,28,54),(3,51,29,64),(4,57,30,52),(5,49,31,62),(6,63,32,50),(7,55,25,60),(8,61,26,56),(9,20,33,47),(10,44,34,17),(11,18,35,45),(12,42,36,23),(13,24,37,43),(14,48,38,21),(15,22,39,41),(16,46,40,19)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | Q8 | C4○D4 | M4(2).8C22 |
kernel | C42.128D4 | C22.C42 | C4×M4(2) | C4⋊M4(2) | C2×C42.C2 | C2×C4⋊C4 | C42 | M4(2) | C2×C4 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 4 | 4 | 4 | 4 |
Matrix representation of C42.128D4 ►in GL6(𝔽17)
13 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 4 | 11 | 4 | 9 |
0 | 0 | 5 | 16 | 4 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 10 | 16 | 2 |
0 | 0 | 13 | 14 | 16 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 7 | 1 | 15 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 3 | 7 | 4 | 10 |
0 | 13 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 13 | 0 | 13 | 4 |
G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,13,4,5,0,0,4,0,11,16,0,0,0,0,4,4,0,0,0,0,9,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,16,13,0,0,1,0,10,14,0,0,0,0,16,16,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,3,0,0,0,7,16,7,0,0,1,1,0,4,0,0,0,15,0,10],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,13,0,0,13,0,0,0,4,0,0,0,0,0,0,13,13,0,0,0,0,0,4] >;
C42.128D4 in GAP, Magma, Sage, TeX
C_4^2._{128}D_4
% in TeX
G:=Group("C4^2.128D4");
// GroupNames label
G:=SmallGroup(128,730);
// by ID
G=gap.SmallGroup(128,730);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,436,2019,1018,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations